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1.1 ABSTRACT

We discuss the possibilities and limitations of studying human language acquisition
using artificial learners from both a theoretical and practical perspective. While this
possibility has become increasingly discussed in recent years [51, 61, 102]—and in
some cases doubted [3]—there has been no precise characterization of the scope of
the possible evidence and the conditions that must be met. On the theoretical side,
we put forward that a deprivation experiment in which a learner acquires language
in an intentionally restricted environment can provide proof that some advantage hy-
pothesized to be enjoyed by humans is, in fact, not necessary for language acquisition.
This strong result is only obtained under the strict conditions that the learner’s envi-
ronment is no stronger than the human learning environment, and that the learner’s
innate inductive is no stronger than humans’. On the practical side, we argue these
conditions are difficult to meet. However, there are many practical opportunities for
strengthening the kinds of evidence that studies with artificial neural networks can
give us about humans. Limiting the quantity and type of linguistic data available to
learners, while enriching the non-linguistic input in their environments, can increase
the chance of obtaining strong evidence about the necessary conditions for humans
to acquire language.

1.2 INTRODUCTION

In the 13th century, the Holy Roman Emperor Frederick II conducted a troubling ex-
periment. He arranged for children to be raised from infancy without any human lan-
guage to determine which language children know from birth: Hebrew, Latin, Greek,
or their mother’s native tongue [17]? This experiment, like similar ones reportedly
conducted by the Pharaoh Psamtik two millennia earlier and by Scotland’s King
James IV two centuries later [27], was deeply unethical and yielded no legitimate
conclusions. But the possibility of language deprivation experiments has appealed
to people throughout history because of the potential to better understand human
language acquisition by manipulating variables during learning.

In the last decade, this possibility has begun to come within reach—without any
of the ethical baggage—through the study of artificial neural networks. Since the
“deep learning tsunami” in computational linguistics [69], we have gained access to
artificial neural networks (ANNs) that largely learn to compose high quality multi-
paragraph prose, to answer reading comprehension questions, and to make human-
like acceptability judgments [65, 37, 5]. Crucially for the purpose of studying human
language acquisition, as we will argue, we also have a high degree control over the
internal learning mechanism and the learning environment of these systems.
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In this time, researchers have begun to investigate the grammatical knowledge of
generalized neural language models [63, 13, 32, 104, 98, 99, 100, 41, 6]. We will refer
to these models simply as LMs, but they learn from several self-supervised training
objectives such as next-word prediction (as in traditional language modeling) or the
cloze task. While many results show that neural networks remain far from human-like
language understanding, massive progress in that direction has been made through
both technical innovations and increases in scale over the last few years [70, 62].

Many authors suggest that, to the extent that models succeed, this can help settle
debates about humans’ innate biases [51, 101, 13, 61, 78, 99]. However, most studies
in this vein use artificial learners trained on convenient but un-human-like datasets
like Wikipedia. As a result, these studies are not optimized to answer questions about
human language learning, and so while their findings might be a useful stepping stone,
their direct relevance to language acquisition is limited. At the same time, others have
questioned the value of using neural networks to study human language acquisition
at all, arguing that their inductive biases are too strong for this to be successful [3].1

The goal of this paper is to characterize what we can (and cannot) hope to learn
about human language acquisition from studying artificial learners, and how best
to maximize the relevance of studies on ANNs to questions of human learning. We
agree with many others who contend that artificial neural networks are especially
well suited to determine which hypothesized advantages (i.e., innate biases or types
of stimuli in the environment) are unnecessary for human language learning [51,
101, 13, 61, 78, 99]. We make this claim more precise by showing how the relevant
conclusions follow deductively from a specific kind of experimental result under very
strict conditions. The way to accomplish this is through a deprivation experiment in
which a learner is deprived during language acquisition of some advantage and then
tested for some target knowledge. If the learner passes the test, this results in an
existence proof that a hypothesized innate bias or some kind of linguistic input is
not needed to successfully acquire the target. This becomes a proof about what is
human-learnable as long as the model learner does not have any additional advantage
over human learners. These experiments could prove to be a valuable tool for testing
many long-standing hypotheses regarding what innate language-specific biases are
needed to explain human language learning [9, 12], as well as for evaluating claims
that the input to the learner lacks key evidence for acquiring certain forms of linguistic
knowledge [10, 56, 59, 4, 87].

The structure of the paper is as follows: Section 2 articulates what an ideal de-
privation experiment in this style would look like, and what such an experiment can
and cannot tell us about humans. The next three sections each focus on ingredients
for designing the ideal experiment, and discuss the ideal setup, the state of current
experiments with model learners, and how to deal with obstacles in achieving this
ideal: Section 3 discusses tests for linguistic knowledge, Section 4 discusses the con-

1On a related note, Dupre has argued that research on ANNs cannot contribute to a theory
of linguistic competence [23]. However, they note that their argument is “consistent with recent
work...that has argued that DL may provide insight into the mechanisms by which linguistic com-
petence is acquired.”
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siderations about the learning environment, and Section 5 discusses considerations
about the learner.

1.3 THE IDEAL EXPERIMENT

In the best case scenario, a deprivation experiment with an artificial learner can give
an existence proof that some linguistic knowledge is human-learnable without some
hypothesized advantage such as an innate bias or a kind of stimulus. An example of
such a proof is given below:

1. Let there exist a test T such that any learner L′ can pass T if and only if L′

has knowledge of a target generalization K.

2. Let there exist a learning environment E such that E is no richer than the
learning environment of a typical human.

3. Let there exist a learner L such that L has no stronger inductive bias than a
typical human.

4. Let there be some environmental (or innate) advantage A that is not initially
present in E (or L) and is hypothesized to be necessary for L to acquire K.

5. Assume that, if the richness of environment E1 is greater than that of E2, then
everything that is learnable in E2 is learnable in E1.

6. Assume that, if learner L1 has stronger inductive bias than L2, then every gen-
eralization K ′ within the hypothesis space for both L1 and L2 that is learnable
for L2 is learnable for L1.

7. Hypothesis: L can pass T after exposure to E.

8. Conclusion: K is learnable for a typical human in a typical learning environment
without A.

We will step through the logic of this proof in detail, but to make things more
concrete, we do so using Chomsky’s classic example of the acquisition of the subject-
auxiliary inversion rule in English [10], which we review briefly here: Through analogy
of strings like (1-a) with declaratives, a learner without a hierarchical bias could
discover empirically that questions in English are formed by moving an auxiliary to
the front; but without examples like (1-b), such the learner could not determine that
the correct rule targets the structurally highest auxiliary, rather than the linearly first
auxiliary. In this example, the target knowledge is the hierarchical rule for subject-
auxiliary inversion. It also includes two advantages hypothesized to play a role in
the acquisition of this rule that we can deprive an artificial learner of. One is an
innate bias towards hierarchical rules, and the other is the disambiguating evidence
from examples like (1-b). The argument from a deprivation experiment states that,
if a model learner deprived of both advantages (as well as any other advantages over
humans) can learn the subject-auxiliary inversion rule, it follows that humans do not
need these advantages, either.
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(1) a. Is the man happy?
b. Is the man who is tall happy?

The argument above begins in lines (1)-(3) with supposing the existence of three
things that each meet their own strict conditions: a test, a learning environment,
and a learner. In the case of subject-auxiliary inversion, the test is some kind of task
that, if completed correctly by a learner, gives proof that the learner has acquired
knowledge of the hierarchical rule for subject-auxiliary inversion in English. If the
test does not have this property, we cannot draw conclusions with any certainty.

The learning environment is some set of stimuli, such as texts of English, that is
not richer than a typical human’s environment. If the learner’s environment is richer
in any respect than a human’s, human-learnability no longer follows from learner
success, since it is possible that the model may have only succeeded by virtue of
advantages in its environment not available to humans. There are many ways in
which the environment could be richer, such as containing far more data than a
human learner is exposed to, or containing numerous examples of subject-auxiliary
inversion in complex sentences.

The learner is some data-driven learning algorithm, such as an ANN. A similar
logic applies to the learner’s bias as to the environment. If the learner possesses
some inductive bias not innate to humans—for example if the learner has innately
programmed into it the ability to parse English sentences—then even if it passes an
adequate test in an impoverished environment, the possibility remains that it would
have failed if restricted to human-like inductive bias.

Line (4) of the argument supposes the existence of some particular advantage that
we know to be omitted from the artificial learning setup. This advantage could be
environmental—for example, the presence of examples of subject-auxiliary inversion
in sentences with embedded clauses like (1-b). It could also be an innate bias—for
example, a bias towards acquiring hierarchical rules.

Lines (5) and (6) introduce two monotonicity assumptions about learnability.
Namely, they suppose that learnability is non-decreasing with respect to richness of
the environment and learner inductive bias. For the environment, this assumption
implies that, if subject-auxiliary inversion is learnable in some environment E, then
enriching E with many examples like (1-b) would not cause the rule to become
unlearnable.2 When it comes to learner inductive bias, the logic is similar, but we must
add the condition that the target generalization remains in the learner’s hypothesis
space for learnability to be preserved, since one way to strengthen inductive bias is
to remove hypotheses from the learner’s hypothesis space.

Line (7) simply states that the experiment has yielded a positive result. For
example, the learner has passed the test for subject-auxiliary inversion without having
access to helpful examples like (1-b) or a hierarchical bias. If this result is obtained,
the conclusion in (8) follows. By lines (2) and (3), typical humans enjoy at least
as many environmental and innate advantages as the learner. By lines (5) and (6),

2This assumption becomes subtle, but still tenable, when one considers the idea that learning
might be easier if the learner is exposed to the simple examples first [24]. Arguably, building this
kind of curriculum into the environment is a form of richness itself.



Draf
t

8 � Algebraic Structures and Natural Language

it would not harm learnability of the subject-auxiliary inversion rule to enrich the
learner’s environment and inductive bias in such a way that they are identical to a
human’s but also lack examples like (1-b) and a hierarchical bias.

To summarize, this argument is useful mainly for the purpose of falsifying a
hypothesis that some advantage, either innate to the learner or in the environment,
is necessary for humans acquiring the target knowledge. There are some differences
between these two cases. In the case of testing the necessity of innate knowledge, it
is generally a matter of contention what innate biases humans have. An existence
proof that some innate bias would be superfluous is evidence against humans having
that bias. In the case of testing the necessity of some stimulus, there are easy ways
to test what is in the input to a typical learner. Numerous corpus studies exist
demonstrating the presence or absence of some kind of stimulus that is hypothesized
to be necessary [60, 87, 95], including some specifically targeting subject-auxiliary
inversion examples like (1-b) [82, 56]. However, merely demonstrating that some
kind of example is present or not does not settle whether the related knowledge is
human-learnable from those examples. A deprivation experiment with an artificial
learner can settle this issue.

What a deprivation experiment cannot do is settle whether humans actually make
use of a particular form of innate knowledge or stimulus. Even if the target knowledge
does not require some hypothesized advantage, that advantage might still play a role
in human language acquisition. There are several reasons this could be the case. First,
there might be some other form of linguistic knowledge that does require the advan-
tage in question. Second, the advantage might make acquiring the target knowledge
more efficient, conferring an evolutionary advantage to a human that makes use of
it. Still, the simplest theory of human language acquisition is one that does not posit
superfluous advantages. If we find that subject auxiliary inversion is learnable with-
out a hierarchical bias, then we should assume humans do not have a hierarchical
bias absent additional evidence to the contrary.

Another limitation of a deprivation experiment is that it only gives an existence
proof when the learner succeeds. If the learner fails, this does not imply that the
hypothesized advantage is necessary. Instead, failure could be due to selecting too
low of a lower bound for model inductive bias or the environment. For this reason,
the best strategy for achieving an existence proof is to aim for a tight lower bound
on human advantage for both these factors. The stronger the model’s bias or the
richer the environment (while not exceeding those of humans), the more likely it is
to succeed.

1.3.1 A Less Ideal Experiment

In reality, the conditions outlined above are quite extreme, and a deductive proof
of human-learnability may be extremely difficult. In the less ideal setting where the
environment or learner have some advantages not enjoyed by humans, there is still
evidence to be gained from deprivation experiments, but the strategies are somewhat
different. One strategy is to limit how much the learner’s environment and biases
exceed humans’, as the evidence becomes stronger to the extent that it is possible.
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Another strategy is to undershoot other aspects of human bias and the richness
of the stimulus as severely as possible. For example, if the learning environment
includes examples like (1-b), but has been augmented with similar but ungrammatical
examples like *Is the man who tall is happy?, this could strengthen evidence about
learnability, assuming the learner is successful.

1.3.2 Examples of Targets for Existence Proofs

The literature on language acquisition contains many claims about what kinds of
innate knowledge are necessary, and in what ways the input to human learners is too
impoverished. These are the kinds of things that can be tested.

First, there are claims about the kinds of innate advantages humans have. [9,
pp. 55-56] argues that humans have a restricted hypothesis space that excludes gen-
eralizations based on linear order, counting, and other surface features. This view
has been expanded by many others (e.g., [107]). Additionally, there are claims about
what kinds of universals and degrees of freedom are present in language acquisition,
many of which were articulated in the Principles and Parameters framework [12].

Second, there are numerous examples of specific phenomena where the input to
learners is thought to be too impoverished to learn the correct generalization without
some innate bias. [10] discussed subject auxiliary inversion. [82] compile a list of
additional cases where key data is argued to be absent from the stimulus: plurals in
noun-noun compounds [31], auxiliary sequence ordering [44], and anaphoric one [2].
[87] argue that environmental data also does not sufficiently constrain the meaning of
the quantifier every. Many other impoverishment claims can be found in the language
acquisition literature, and deprivation experiments would subject them to a more
stringent empirical test.

1.4 TESTS OF HUMAN-LINGUISTIC KNOWLEDGE

The formal argument in Section 1.3 requires the existence of a test. In this section, we
discuss in theory what it means to test an artificial learner for human-like linguistic
competence, before surveying existing resources that can be used as tests of linguistic
performance.

1.4.1 Tests in Theory

The learnability proof we have outlined outlined concludes with proving the learn-
ability of some form of linguistic knowledge. In theory, a deprivation experiment could
target human-like linguistic competence if a fool-proof test for competence exists.3
However, in practice, most tests are behavioral, and therefore really target linguistic
performance. In addition to being easily observable, performance is more theory-
neutral than competence. Competence is a theoretical construct even for humans, so
a test of competence would always be subject to our degree of belief in the theory.
Additionally, there is a good deal about knowledge that can be inferred from per-

3Though see [23] for arguments that the notion of linguistic competence cannot apply to ANNs.
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Phenomenon N Acceptable Example Unacceptable Example
Anaphor agr. 2 Many girls insulted themselves. Many girls insulted herself.
Arg. structure 9 Rose wasn’t disturbing Mark. Rose wasn’t boasting Mark.
Binding 7 Carlos said that Lori helped him. Carlos said that Lori helped himself.
Control/raising 5 There was bound to be a fish escap-

ing.
There was unable to be a fish escap-
ing.

Det.-noun agr. 8 Rachelle had bought that chair. Rachelle had bought that chairs.
Ellipsis 2 Anne’s doctor cleans one important

book and Stacey cleans a few.
Anne’s doctor cleans one book and

Stacey cleans a few important.
Filler-gap 7 Brett knew what many waiters find. Brett knew that many waiters find.
Irregular forms 2 Aaron broke the unicycle. Aaron broken the unicycle.
Island effects 8 Which bikes is John fixing? Which is John fixing bikes?
NPI licensing 7 The truck has clearly tipped over. The truck has ever tipped over.
Quantifiers 4 No boy knew fewer than six guys. No boy knew at most six guys.
Subj.-verb agr. 6 These casseroles disgust Kayla. These casseroles disgusts Kayla.

TABLE 1.1 Minimal pairs from each of the twelve categories covered by BLiMP. Differences
between sentences are underlined. N is the number of minimal pair types within each broad

category. (Table from Warstadt et al. [100] reprinted with permission.)

formance alone. Although this has its limitations—two systems that have identical
behavior in some respects could have very different internal functioning—we can con-
strue performance very broadly to include many aspects of behavior, ranging from
acceptability judgments to order of acquisition and processing difficulty.

1.4.2 Existing Tests

There are now numerous well-motivated, controlled, and challenging tests for different
aspects of neural networks’ grammatical knowledge.

These tests fall roughly into two main categories: supervised and unsupervised.
Unsupervised tests do not rely on task-specific training beyond a self-supervised
training objective such as language modeling. Thus any linguistic knowledge revealed
by these methods can only have been acquired through self-supervised exposure to the
learning environment, or to innate abilities of the learner. While supervised or weakly
supervised methods do provide models with task-specific instruction, supervised tasks
can be constructed to answer complementary questions to unsupervised tests, much
like artificial language learning experiments on humans [33].

1.4.2.1 Unsupervised Tests

Language model scoring over minimal sets of sentences, sometimes referred to as
targeted syntactic evaluation, is one of the mostly widely adopted methods. Intro-
duced by [63], this method relies on the assumption that language models should
assign higher probability to a grammatical sentence4 than to a minimally different
ungrammatical one. This is a necessary—though not sufficient—condition of encoding
whatever grammatical concepts are responsible for the reported contrast in humans.

BLiMP (The Benchmark of Linguistic Minimal Pairs) [100] is the largest-scale re-
4...or substring of a sentence, conditioned on the prefix.
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source for language model scoring. It tests 67 minimal pair types in English, each con-
sisting of 1k pairs, organized into 12 broad categories. These categories cover morphol-
ogy (e.g. subject verb agreement and determiner-noun agreement), syntax (e.g. ar-
gument structure, island effects and binding), and semantics phenomena (e.g. quan-
tification and negative polarity items). Table 1.1 shows examples from BLiMP of one
minimal pair type for each of these categories. Closely related is SyntaxGym [28, 41],
which adopts a version of the LM scoring paradigm in which the model’s predictions
must conform to more than one hypothesized inequality over a set of sentences, rather
than just a minimal pair.

The tests above focus on offline acceptability judgments, but other measures of
performance are possible. For example, [105] test LMs’ predictions against humans’
online processing difficulty using SyntaxGym. Under the theoretically motivated as-
sumption that there should be a log-linear relationship between a word’s online pro-
cessing time in humans and a LM’s predicted probability for the word in context
[34, 58], it is possible to test the conditions under which human-like processing can
be acquired.

1.4.2.2 Supervised Tests

Another kind of evaluation uses constrained supervision to probe how neural net-
works generalize. In this approach, what is under investigation is not knowledge of a
particular phenomenon in the training data, but whether models extend knowledge
to unseen cases in ways that we expect humans to.

This approach can tell us the extent to which models show rule-governed behav-
ior. For example, COGS (Compositional Generalization Challenge based on Semantic
Interpretation) [43] is a semantic parsing dataset in which certain semantic configura-
tions in the test data are systematically held-out from the training data. If a model is
able to learn that semantics, syntax, and surface form are related by a set of general
compositional and phrase-structure rules, then it should correctly parse a noun in
any syntactic position, even if it has only seen that noun in object position during
training.

This approach is also useful for probing the inductive biases of neural networks.
The Poverty of the Stimulus experimental design [106] provides a paradigm for doing
so. Figure 1.1 gives an example from [103] of an experiment following this design. A
learner is trained to perform a task given data that is ambiguous between (at least)
two hypotheses, and tested on data where the hypotheses make divergent predictions.
For example, numerous studies have used this design to test whether ANNs prefer
a generalization based syntactic structure or one based on linear order for subject
auxiliary inversion [26, 71, 72, 99].

One large-scale dataset making use of this design is MSGS (The Mixed Signals
Generalization Set) [103], which tests whether a learner has a bias towards linguistic
or surface generalizations. MSGS consists of 20 ambiguous tasks, each pairing one
of four linguistic generalizations (e.g. labels indicate whether the main verb of the
sentence is in the progressive form) with one of five surface generalizations (e.g.
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The rumor that a CEO is losing spread.

A boy who is hugging the cat sneezed.

A guest said that the boat is sinking.

Test behavior: Surface bias observed

Label=0,Prediction=1

A rumor that the CEO lost is spreading.

Label=0,Prediction=0

The boy who hugged a cat is sneezing.
1   2   3   4      5 6   7  8

A rumor that the CEO lost is spreading.

Disambiguating Test Data

Test behavior: Linguistic bias observed

Linguistic Generalization: 
Is the main verb in the “-ing” form?

Ambiguous Training Data

Surface Generalization: 
Does the word “the” precede “a”?

Hypothesis Space ?

A boy who hugged the cat is sneezing.
1 2   3   4     5   6   7  8

Label=1
The boy who hugged a cat is sneezing.

Label=1
The guest is saying that a boat sinks.

Label=0

Label=0

Label=1,Prediction=1

The rumor that a CEO is losing spread. 

Label=1,Prediction=0

Figure 1.1 Example of an experiment following the Poverty of the Stimulus design
(reprinted from [103] with permission). A model is trained on ambiguous data whose
labels are consistent with either a linguistic or a surface generalization, and tested
on disambiguating data whose labels support only the linguistic generalization. Light
green and dark red shading represents data or features associated with the positive
and negative labels/predictions, respectively.
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labels indicate whether the sentence is longer than 10 words). [66] also construct a
similar dataset.

1.4.2.3 What Do Out-of-Domain Tests Tell Us About Learnability?

The goal of a learnability existence proof is to draw some conclusion about an un-
structured learning environment. Perhaps surprisingly, training on a supervised task
with labeled data can still tell us something of use here. The key is to use already
trained language models to provide the initial weights for the main component of a
task-specific models. This is, of course, a straightforward application of the popular
pretrain and fine-tune paradigm in NLP [19, 39, 85, 21].

Following this setup, the experiment can tell us whether an inductive bias, such
as a hierarchical bias or a compositionality bias, can be acquired through exposure to
the unstructured learning environment [99, 103]. An acquired inductive bias, though
not present innately in the learner, can still influence how the learner forms general-
izations about sub-problems encountered during the learning process. One caveat is
that it is difficult to tell whether the target learning mechanism is actually implicated
in learning the relevant phenomenon.

1.5 THE LEARNING ENVIRONMENT

To achieve an existence proof of human-learnability, it is necessary to create a learning
environment for the artificial learner that represents a lower bound on the richness
of the input to human learners. The designer of a deprivation experiment must take
care that the learner’s environment does not exceed the quantity or quality of data
available to humans. Of course, if learning succeeds in an environment that is far
poorer than a human’s—for instance, one containing only a few thousand words—
this would make the point strongly. One can go too far in this direction, though, for
if the learner fails to acquire the target there is no existence proof. This is why a tight
lower bound gives the greatest chance of an existence proof. Furthermore, although
ANNs are exposed to large amounts of text data, their learning environment is still
impoverished compared to humans in terms of non-linguistic input, such as visual
stimuli, and inter-agent interaction. Thus there is ample room to enrich the learning
environment of ANNs in certain directions without exceeding the conditions of a
strong learnability proof.

There is a lot we do not yet know about how altering the learning environments of
LMs to better resemble humans’ will affect grammar learning. Much of the discussion
of the human learning environment has emphasized how impoverished it is [9]. On the
other hand, a realistic environment may turn out to be richer than it seems. ANNs
have proven in the last few years that there is a surprising amount of signal in plain
text data. The problem with most of these results is that these models are trained
in an environment that is very unlike the human learning environment, and neither
strictly richer nor strictly more impoverished. In this section, we will step through
the ways in which the learning environments of ANNs are unlike the human learning
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environment, and discuss a growing body of work which has sought to address these
points of divergence.

1.5.1 Data Quantity

Most popular ANNs for NLP have been trained on far more words than a human
learner. While this was not the case only a few years ago, this trend has only been
increasing. Thus, researchers interested in questions about human language acquisi-
tion have already begun to evaluate models trained on more human-scale datasets
[96, 100, 109, 41, 77, 83].

However, it is not trivial to determine how many words a typical human learner
is exposed to. The best-known figures come from Hart & Risley’s study on Ameri-
can English-speaking children’s linguistic exposure in the home [35]. They find that
children are exposed to anywhere from 11M words per year to as little as 3M words,
depending on a number of factors such as family income. These figures include all
speech in the home environment, not just child-directed speech. Choosing the be-
ginning of puberty as a somewhat arbitrary cutoff point for language acquisition,
and assuming that Hart & Risley’s numbers extrapolate linearly, a child will acquire
language with anywhere from tens of millions of words to over a hundred million
words.

By comparison, popular neural language models are trained on corpora consisting
of far more: BERT [21] is trained on about 3.3 billion words, RoBERTa [65] is trained
on about 30 billion, and GPT-3 [5] is trained on about 300 billion. Thus, the most
impoverished of these models has linguistic experience equivalent to about 300 human
years, and the most enriched is at 30,000 human years.

We can already begin to draw some conclusions about how linguistic performance
of LMs scales with the quantity of available data. One study by Zhang, Warstadt, Li,
and Bowman [109] uses BLiMP to evaluate models trained in the style of RoBERTa
[65] on datasets ranging from 1M words to 1B words. Figure 1.2 summarizes their
results, showing the growth in sensitivity to acceptability contrasts as a function of
the amount of training data available to an LM.

They find that language models do learn many human-like generalizations given
abundant data when tested using unsupervised LM scoring. RoBERTabase which is
trained on about 30B words [65] achieves near-human performance (which we define
as accuracy within 2% points of humans or better) on 6 out 12 BLiMP categories.
Among these categories are phenomena involving long distance syntactic dependen-
cies such as filler-gap dependencies and island effects, which have been previously
found be challenging [100].

On the other hand, language models generally fail to reach human-level accu-
racy when restricted to human-scale data quantities. According to the same study,
RoBERTa models trained at human-scale on 100M words only achieve near-human
performance in at most 2 BLiMP categories. Models trained on 10M words are unsur-
prisingly even worse, reaching near-human performance in at most 1 BLiMP category.
This finding is corroborated by several other studies that report results from models
trained at similar data scales [96, 100].
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Figure 1.2 Learning curves from Zhang, Warstadt, Li, and Bowman [109] (printed here
with permission) showing LM improvement in BLiMP performance as a function of
the number of words of training data available to the model. RoBERTa-Large per-
formance was originally reported from Salazar et al. [90], and human task agreement
was originally reported in the release of BLiMP [100].
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Zhang et al. also find that most improvement in language models on BLiMP
occurs as training corpus volume increases from 1M to 10M words. This can be seen
in both the repeated gray curve in Figure 1.2 representing overall performance, as
well is in many phenomenon-specific learning curves. Substantial improvements are
still possible between 10M and 100M words, but after this point, performance starts
to plateau. Similar findings have been reported for LSTMs as well [96, 100].

1.5.2 Data Source

Another point of divergence between human and model learning environments is the
source of language data. One of the main distributional differences is that all the
linguistic input to a pre-literate child is spoken or signed. Ideally, the model learner’s
environment should consist of unstructured audio of spoken language (or video of
signing). While there have been some first steps towards training LMs on such data
[75, 50], these techniques are still not developed enough to draw conclusions from.5

As long as text-based training remains the only viable option for training LMs,
the most ecologically valid text domain is transcribed speech. One source of such
data is CHILDES, a database of transcribed parent-child discourse [68]. Indeed, such
infant-directed speech is a major source of input to many child learners, and some
go so far as to train model learners exclusively on child-directed speech [89, 79].
This is probably overkill: Child-directed speech makes up only a small fraction of the
linguistic input to child learners, and in some communities it is vanishingly rare [18].

Another large-scale source of transcribed speech is COCA [20], which includes
83M words of transcribed speech from unscripted radio and TV programs. One step
down in terms of ecological validity is OpenSubtitles [64], which contains over 2B
words of English subtitles from scripted and unscripted television and radio, as well
as over 100M words of subtitles in numerous other languages. While these datasets
are ultimately not what is needed to obtain strong learnability proofs, they can give
stronger evidence than training datasets currently used to train popular language
models such as Wikipedia, news, and web data.

1.5.3 Prosody

There is substantial linguistic information in speech not present in text, especially
prosody. Prosodic bootstrapping is thought to play a major role in syntactic acquisi-
tion [30, 92], so LMs are at a distinct disadvantage in this respect. On the other hand,
text data has punctuation and white space, and is tokenized prior to input into an
LM, which provides an advantage to models when it comes to detecting word, phrase,
and sentence boundaries. Again, if practical limitations are not an issue, it is best
to study models trained mostly on audio. But since this is not totally practical at
the moment, there is still a lot to learn from LMs trained on text. Text exceeds the

5For example, current state-of-the-art performance of audio-trained LMs on a modified audio
version of BLiMP is only 58% accuracy—just 8% points above chance—compared to over 79%
accuracy for RoBERTa models trained on 100M words.
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richness of speech in fairly limited ways, meaning that results from text-trained LMs
still give suggestive evidence about humans.

1.5.4 Non-linguistic Input

Despite some advantages in the linguistic environments of typically studied ANNs,
they have severe non-linguistic disadvantages compared to humans. Whereas most
ANNs studied in this literature learn in a text-only environment with a simple LM
training objective, humans learn in a multifaceted environment with many forms of
sensory input, other agents to interact with, and complex risks and rewards. The
effects of these differences in non-linguistic input on grammar learning are likely to
be more indirect than changes in linguistic input. Still, they may turn out to be
substantial, especially when it comes to the quantity of linguistic input the learner
requires.

1.5.4.1 Multimodal Input

Theories of language acquisition have long hypothesized a substantial role for senso-
rimotor input. Concepts learned through multimodal inputs in pre-linguistic infants
and later on in learning can enable word learning and potentially even grammar
learning [29, 40].

Standard LMs like BERT must achieve all learning of this kind from text alone.
Indeed, these models can acquire some semblance of world knowledge. They have
been shown to be somewhat effective as knowledge bases for retrieval of encyclope-
dic knowledge [80], and they now achieve strong performance on Winograd schema
challenge sets [86]. On the other hand, there is still reason for skepticism regarding
how much world knowledge is needed to succeed on these evaluations [46]. Also, the
quantity of training data needed to achieve strong performance on even these lim-
ited benchmarks is on the order of one billion of words [109]. Thus, whatever limited
world knowledge language models can acquire is not likely to be useful for language
acquisition at the same early stages of learning as in humans.

On the other hand, there is a growing inventory of ANNs trained jointly on vision
and language data [54, 67, 94, 8]. However, evidence from linguistic evaluation of
several models suggests that the visual input they receive does little to help with
grammar learning [108], though more recent contrastively trained models may be
different in this respect [84]. Most of these models learn from extending self-supervised
objectives like the cloze task to the vision domain. Currently, one limitation of the
models is that their linguistic input is even farther from that of human learners than
language-only models. Most are trained entirely on image caption datasets such as
MS COCO or Visual Genome [7, 47], which lack extended discourses and dialogues
and contain a non-representative sample of sentence types. Furthermore, visual input
to humans is continuous and moving, and thus richer than still images. Video and
language models do not achieve a more realistic training environment. For example,
VideoBERT is trained on YouTube cooking videos and text from automatic speech
recognition [93].
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1.5.4.2 Interactive Learning

Another ingredient missing from the input to most available model learners is inter-
action with an environment containing other conversational agents. While the objec-
tive of LMs is to reproduce the distribution of words and phrases in the language as
faithfully as possible, human learners have a much more complex and varied objective
function. We use language to share information, to make queries, and to issue and
comprehend directives [1, 91]. The incentive for acquiring grammar in humans is that
it makes these kinds of interactions possible, and these interactions help us achieve
our non-linguistic goals.

The artificial learning paradigm that comes closest to reproducing this aspect of
the human learning environment is multiagent reinforcement learning [53]. In this
framework, multiple artificial agents are given a cooperative goal, such as to solve
a reference game, which requires developing a mode of communication. However,
these emergent modes of communication generally do not resemble human language
[52], and efforts to better align them to existing natural languages (for instance by
initializing agents with language models trained on English) have had mixed results
[55].

1.6 THE LEARNER

In this section we consider the final condition on a strong proof of learnability: a
learner that does not exceed the inductive bias of humans.

1.6.1 What Is a Lower Bound on Inductive Bias?

Achieving a tight lower bound on human innate inductive bias is constrained by a
number of factors. First, doing so requires knowing enough about humans’ innate
biases—including domain general biases—to avoid exceeding them. Second, defin-
ing how one bias can be “weaker” than another is not just a practical issue, but a
challenging theoretical one which will take considerable work to formalize, making it
difficult to directly compare the relative strengths of human and model biases. Third,
we are limited by the available set of learners, and developing effective new artificial
learners is a large and mature field of research in its own right. Acknowledging these
practical limitations, what would an ideal model learner look like?

One possible misconception is a model learner must be an unbiased tabula rasa
in order to prove some innate bias unnecessary for language acquisition. First, this
would be an impossible standard to meet, since all learners have some inductive
bias. A inductive bias is just a prior over the hypothesis space, and thus a necessary
property of any learner that can converge [73]. Second, we know of no claims that
humans are totally unbiased learners. Many do argue that language-specific biases are
not necessary to explain language acquisition [45, 89, 16, 14]. They suggest that we
may instead have innate domain general biases which aid us in language acquisition.
For an existence proof of this claim, the model learner only needs to lack language
specific bias, and can possess domain-general bias as long it is no stronger than a
human’s.
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Some points here require a bit of refinement. First, what does it mean for one
inductive bias to stronger than another? Defining a strength ordering over inductive
biases in general is not a trivial matter, and we are only aware of some definitions
that apply to special classes of learners [76]. As a rigorous solution to this problem
is beyond the scope of this work, we can suggest a heuristic approach to compare
inductive biases. An inductive bias B is a learner’s prior probability distribution over
the hypothesis space [36]. Intuitively, B is more biased than another inductive bias
A if and only if B concentrates more probability mass on a smaller subset of the
hypothesis space. In other words, given a list of hypotheses ordered by probability
for each bias, the probability mass of all the hypotheses up to rank n will always be
greater for B than for A.

Second, what does it mean for a bias to be language-specific? An example of the
subtlety of this issue is hierarchical bias. Chomsky famously argues that humans have
a bias towards forming a generalizations based on syntactic structures about gram-
matical operations like subject-auxiliary inversion, when linear generalizations would
adequately describe most of the data [9]. However, it is possible to question how
language-specific even this bias is, since non-linguistic aspects of human cognition
such as music also make use of hierarchical structures [57]. More recently, Chomsky
has claimed that the primary innate endowment that enables language learning is
unbounded Merge, or the ability to form recursive concepts [11]. Merge in this view
emerged prior to language as we know it: It would have evolved mainly to facilitate
abstract thought, with language later co-opting this operation. While Chomsky sug-
gests that Merge in this incarnation is implicated in the language of thought, whether
it can be claimed to be truly language-specific seems to be a matter more of termi-
nology than of actual substantive debate. One possible conclusion is that whether
a learner’s inductive bias is language-specific is a matter of degree, but we leave a
formal exploration of this to future work.

1.6.2 Achieving a Lower Bound on Human Inductive Bias in Practice

Practically, our ability to choose appropriate model learners is constrained by the
available models. In recent years, our understanding of these models’ inductive biases
has grown substantially thanks to much empirical work.

1.6.2.1 Available Models

Most research in contemporary natural language processing makes use of a small
number of neural architectures. Recurrent neural networks (RNNs) [24], and more
specifically LSTMs [38] and GRUs [15], grew massively in popularity around 2014
and 2015. Transformers [97] became dominant in NLP applications starting in 2018
with the advent of BERT [21].

RNNs and Transformers are both generally deep, in the sense that they consist
of multiple layers, where the outputs of one layer serve as the input to the next.
The most notable difference between RNNs and Transformers is in how they accept
inputs. An RNN processes the input sequentially, updating a state representation
incrementally after reading each word. Gated RNNs like LSTMs and GRUs follow
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this same principle, while designing additional machinery to manage this update
process. Transformers, which have proven far more effective at large scales, process
each token of a string entirely in parallel using an attention mechanism, operating
iteratively over a fixed set of layers, rather than over the length of the sequence. At
each layer, the representation for each input word depends on a weighted combination
of all representations from the previous layer.

1.6.3 The Inductive biases of Neural Network Architectures

Do any of these models represent a lower bound on humans’ innate inductive bias?
Strictly speaking, the answer is almost certainly “no”. It would be extremely surpris-
ing if their inductive biases were weaker in all respects, as these models have become
widely used due to their empirical success at NLP applications rather than a strict
adherence to not exceeding humans’ inductive bias.

So what are the inductive biases of these models, and are they well-suited to
carrying out informative deprivation experiments? A growing body of work helps
to address these question by evaluating neural networks for a variety of human-like
inductive biases.

Numerous studies have found that ANNs lack a variety of human-like inductive
biases prior self-supervised training. One striking example is that humans, but not
ANNs, show a strong compositionality bias. A key property of language is that words
and phrases in language make stable compositional contributions to the semantics of
larger constituents [74, 25]. One consequence of this is that humans can understand
the compositional semantic contribution of a newly learned word in any appropriate
context [49]. However, ANNs have shown a general inability to make compositional
generalizations like this [48, 43, 42].

ANNs also generally lack a bias towards adopting hierarchical generalizations.
McCoy, Frank, & Linzen test several varieties of RNNs without any pretraining using
the Poverty of the Stimulus method on an ambiguous subject auxiliary inversion
task, and find that none converge on a systematic hierarchical generalization [72].
Subsequently, Petty & Frank have shown a similar result for Transformers [81].

The fact that ANNs lack these human-like biases might make them more ap-
propriate model learners for deprivation experiments for two reasons. First, it means
they do not have any special innate advantage over humans in these respects. Second,
if the goal of the study is to establish, for example, whether an innate structural bias
is necessary for learning some target, then an off-the-shelf ANN is already a rela-
tively appropriate test subject without any special modification to remove the bias
in question. However, much stronger evidence about their inductive biases is needed
for strong existence proofs.

One practical question is whether there is an advantage to using RNNs or Trans-
formers as model learners. RNNs have a strong locality bias [22, 88] which Transform-
ers lack. This is a consequence of the models’ architectures. RNNs have the notion of
linear order built in, since they get information about the rest of the sequence only
from the previous token’s output. Transformers on the other hand only receive infor-
mation about linear order through a set of dedicated positional embeddings added to
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the input. As a result, Transformers must learn the semantics of positional embed-
dings including notions like locality from scratch.

On the other hand, the differences between the biases of LSTMs and Transformers
may be weaker than one might expect when it comes to grammar learning. For
example, [100] compute the correlation between the accuracy scores of pairs of LMs
on BLiMP. Among a population of models including an n-gram model, an LSTM,
and two Transformers, they found that most strongly correlated models were the
LSTM and one of the Transformers.

1.7 CONCLUSION

Thanks to recent advances in machine learning, we are closer than ever before to
being able to construct an ethically-sound experiment that can allow us to more
precisely limit the necessary conditions for the human-learnability of grammar. We
have argued that a deprivation experiment with an ideal design can give this degree
of certainty. From a practical standpoint, however, we are far from being able to
construct the ideal experiment, especially when it comes to having certainty that the
inductive biases of our model learners are appropriately weak. While this means work
on artificial learners in the near future is unlikely to yield any incontrovertible proof
about human learnability, we do not find this to be cause for despair. A deprivation
experiment that does not meet the stringent conditions of an ideal experiment can still
contribute converging evidence about human learnability, even if it cannot provide
proof. And the evidence becomes stronger as we come closer to constructing ideal
learning environments and learners for this design.

At present, there are many actionable opportunities for constructing experiments
that come closer to this ideal. The most obvious is restricting the quantity and kind
of text data used to train model learners. That said, there are also many remaining
ways to safely enrich the environments of model learners through the introduction of
multimodal input and interaction with other agents.

On the other hand, the problem of constructing effective learners with the right
inductive bias remains difficult. One serious limitation is our ability to compare in-
ductive bias of humans and models. Until we can reliably quantify these properties of
a learner, we cannot have the necessary degree of confidence in our choice of a model
learner to obtain an existence proof about learnability. That said, most studies into
the inductive biases of current model learners show that they lack biases thought
to be important to human learning. Though we may have to wait for advances in
models and learning theory for the final answers, experiments with current models
still provide new evidence about what advantages humans do and do not need to
acquire language.

ACKNOWLEDGMENTS

We are grateful to Ailis Cournane, Najoung Kim, Will Merrill, and Grusha Prasad
for comments on this draft, and to audiences at the Machine Learning for Language
group at NYU and Computational and Pyscholinguistics Lab group at NYU and



Draf
t

22 � Algebraic Structures and Natural Language

Johns Hopkins. We also thank Roger Levy and Tal Linzen for comments on a much
earlier version of this work.

This project has benefited from financial support to SB by Eric and Wendy
Schmidt (made by recommendation of the Schmidt Futures program), Samsung Re-
search (under the project Improving Deep Learning using Latent Structure), Apple,
and Intuit. This material is based upon work supported by the National Science
Foundation under Grant No. 1850208. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.



Draf
t

Bibliography

[1] JL Austin. How to Do Things With Words. Oxford University Press, 1962.

[2] Carl Lee Baker. Introduction to Generative-Transformational Synta. Prentice-
Hall, Englewood Cliffs, NJ, 1978.

[3] Marco Baroni. On the proper role of linguistically-oriented deep net analysis
in linguistic theorizing. arXiv:2106.08694 [cs], June 2021. arXiv: 2106.08694.

[4] Robert C Berwick, Paul Pietroski, Beracah Yankama, and Noam Chomsky.
Poverty of the stimulus revisited. Cognitive Science, 35(7):1207–1242, 2011.
Publisher: Wiley Online Library.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are
Few-Shot Learners. In Advances in Neural Information Processing Systems,
2020.

[6] Rui P. Chaves. What Don’t RNN Language Models Learn About Filler-Gap
Dependencies? In Proceedings of the third meeting of the Society for Computa-
tion in Linguistics (SCiL), 2020.

[7] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta,
Piotr Dollar, and C. Lawrence Zitnick. Microsoft COCO Captions: Data Collec-
tion and Evaluation Server. In European conference on computer vision, pages
740–755. Springer, April 2015. arXiv: 1504.00325.

[8] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe
Gan, Yu Cheng, and Jingjing Liu. UNITER: UNiversal image-text representa-
tion learning. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, Computer vision – ECCV 2020, pages 104–120, Cham, 2020.
Springer International Publishing.

[9] Noam Chomsky. Aspects of the Theory of Syntax. MIT Press, 1965.

[10] Noam Chomsky. Problems of knowledge and freedom: The Russell lectures.
1971.

23



Draf
t

24 � Bibliography

[11] Noam Chomsky. Biolinguistic Explorations: Design, Development, Evolution.
International Journal of Philosophical Studies, 15(1):1–21, January 2007.

[12] Noam Chomsky and Howard Lasnik. The theory of principles and parameters.
In The minimalist program. MIT Press, 1993.

[13] Shammur Absar Chowdhury and Roberto Zamparelli. RNN simulations of
grammaticality judgments on long-distance dependencies. In Proceedings of
the 27th international conference on computational linguistics, pages 133–144,
2018.

[14] Morten H Christiansen and Nick Chater. Creating language: Integrating evolu-
tion, acquisition, and processing. MIT Press, 2016.

[15] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-
pirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv:1412.3555 [cs], December 2014. arXiv: 1412.3555.

[16] Alexander Clark and Shalom Lappin. Linguistic nativism and the poverty of
the stimulus. John Wiley & Sons, 2010.

[17] G. G. Coulton. The Princes of the World. In From St. Francis to Dante,
Translations from the Chronicle of the Franciscan Salimbene, 1221-1288, pages
239–256. University of Pennsylvania Press, 2 edition, 1972.

[18] Alejandrina Cristia, Emmanuel Dupoux, Michael Gurven, and Jonathan
Stieglitz. Child-Directed Speech Is Infrequent in a Forager-Farmer Population:
A Time Allocation Study. Child Development, 90(3):759–773, May 2019.

[19] Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-
vances in neural information processing systems, volume 28. Curran Associates,
Inc., 2015.

[20] Mark Davies. The 385+ million word Corpus of Contemporary American En-
glish (1990–2008+): Design, architecture, and linguistic insights. International
journal of corpus linguistics, 14(2):159–190, 2009. Publisher: John Benjamins.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 4171–4186, 2019.

[22] Bhuwan Dhingra, Qiao Jin, Zhilin Yang, William Cohen, and Ruslan Salakhut-
dinov. Neural Models for Reasoning over Multiple Mentions Using Corefer-
ence. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 42–48, 2018.



Draf
t

Bibliography � 25

[23] Gabe Dupre. (What) Can Deep Learning Contribute to Theoretical Linguistics?
Minds and Machines, September 2021.

[24] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211,
1990. Publisher: Wiley Online Library.

[25] Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architec-
ture: A critical analysis. Cognition, 28(1-2):3–71, 1988. Publisher: Elsevier.

[26] Robert Frank and Donald Mathis. Transformational networks. Models of Hu-
man Language Acquisition, page 22, 2007.

[27] Victoria Fromkin, Stephen Krashen, Susan Curtiss, David Rigler, and Marilyn
Rigler. The Development of Language in Genie: a Case of Language Acquisition
beyond the ”Critical Period”. Brain and Language, 1:81–107, 1974.

[28] Jon Gauthier, Jennifer Hu, Ethan Wilcox, Peng Qian, and Roger Levy. Syn-
taxGym: An Online Platform for Targeted Evaluation of Language Models. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 70–76, Online, July 2020. Associa-
tion for Computational Linguistics.

[29] Jane Gillette, Henry Gleitman, Lila Gleitman, and Anne Lederer. Human
simulations of vocabulary learning. page 42, 1999.

[30] Lila Gleitman and Eric Wanner. Language Acquisition: The State of the Art.
In Lila Gleitman and Eric Wanner, editors, Language Acquisition: The State of
the Art. Cambridge University Press, 1982.

[31] Peter Gordon. Level-ordering in lexical development. Cognition, pages 73–93,
1985.

[32] Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco
Baroni. Colorless green recurrent networks dream hierarchically. Proceedings
of the Society for Computation in Linguistics, 2(1):363–364, 2019.

[33] Rebecca L Gťomez and LouAnn Gerken. Infant artificial language learning
and language acquisition. Trends in cognitive sciences, 4(5):178–186, 2000.
Publisher: Elsevier.

[34] John Hale. A Probabilistic Earley Parser as a Psycholinguistic Model. In Second
Meeting of the North American Chapter of the Association for Computational
Linguistics, 2001.

[35] Betty Hart and Todd R. Risley. American parenting of language-learning
children: Persisting differences in family-child interactions observed in natural
home environments. Developmental Psychology, 28(6):1096, 1992. Publisher:
American Psychological Association.



Draf
t

26 � Bibliography

[36] David Haussler. Quantifying inductive bias: AI learning algorithms and
Valiant’s learning framework. Artificial intelligence, 36(2):177–221, 1988. Pub-
lisher: Elsevier.

[37] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. DeBERTa:
Decoding-enhanced BERT with Disentangled Attention. In International con-
ference on learning representations, 2020.

[38] Sepp Hochreiter and J ĺurgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997. Publisher: MIT Press.

[39] Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-tuning
for Text Classification. In Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pages 328–339,
2018.

[40] Steve R. Howell, Damian Jankowicz, and Suzanna Becker. A model of grounded
language acquisition: Sensorimotor features improve lexical and grammatical
learning. Journal of Memory and Language, 53(2):258–276, August 2005.

[41] Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox, and Roger Levy. A
Systematic Assessment of Syntactic Generalization in Neural Language Models.
In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 1725–1744, Online, July 2020. Association for Computational
Linguistics.

[42] Daniel Keysers, Nathanael Schĺarli, Nathan Scales, Hylke Buisman, Daniel Fur-
rer, Sergii Kashubin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak,
Tibor Tihon, Dmitry Tsarkov, Xiao Wang, Marc van Zee, and Olivier Bous-
quet. Measuring Compositional Generalization: A Comprehensive Method on
Realistic Data. arXiv:1912.09713 [cs, stat], June 2020. arXiv: 1912.09713.

[43] Najoung Kim and Tal Linzen. COGS: A Compositional Generalization Chal-
lenge Based on Semantic Interpretation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 9087–
9105, Online, November 2020. Association for Computational Linguistics.

[44] John P. Kimball. The Formal Theory of Grammar. Prentice-Hall, Englewood
Cliffs, NJ, 1973.

[45] Simon Kirby. Function, selection, and innateness: The emergence of language
universals. OUP Oxford, 1999.

[46] Vid Kocijan, Thomas Lukasiewicz, Ernest Davis, Gary Marcus, and Leora Mor-
genstern. A Review of Winograd Schema Challenge Datasets and Approaches.
arXiv:2004.13831 [cs], April 2020. arXiv: 2004.13831.

[47] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma,



Draf
t

Bibliography � 27

Michael S. Bernstein, and Li Fei-Fei. Visual Genome: Connecting Language and
Vision Using Crowdsourced Dense Image Annotations. International Journal
of Computer Vision, 123(1):32–73, May 2017.

[48] Brenden Lake and Marco Baroni. Generalization without systematicity: On
the compositional skills of sequence-to-sequence recurrent networks. In Inter-
national Conference on Machine Learning, pages 2879–2888, 2018.

[49] Brenden M. Lake, Tal Linzen, and Marco Baroni. Human few-shot learning
of compositional instructions. In Proceedings of the 41st Annual Conference of
the Cognitive Science Society, May 2019.

[50] Kushal Lakhotia, Evgeny Kharitonov, Wei-Ning Hsu, Yossi Adi, Adam Polyak,
Benjamin Bolte, Tu-Anh Nguyen, Jade Copet, Alexei Baevski, Adelrahman
Mohamed, and Emmanuel Dupoux. Generative Spoken Language Modeling
from Raw Audio. arXiv:2102.01192 [cs], September 2021. arXiv: 2102.01192.

[51] Jey Han Lau, Alexander Clark, and Shalom Lappin. Grammaticality, accept-
ability, and probability: A probabilistic view of linguistic knowledge. Cognitive
Science, 41(5):1202–1241, 2017. Publisher: Wiley Online Library.

[52] Angeliki Lazaridou and Marco Baroni. Emergent Multi-Agent Communication
in the Deep Learning Era. arXiv:2006.02419 [cs], July 2020. arXiv: 2006.02419.

[53] Angeliki Lazaridou, Alexander Peysakhovich, and Marco Baroni. Multi-Agent
Cooperation and the Emergence of (Natural) Language. In International Con-
ference on Learning Representations, March 2017. arXiv: 1612.07182.

[54] Angeliki Lazaridou, Nghia The Pham, and Marco Baroni. Combining Lan-
guage and Vision with a Multimodal Skip-gram Model. In Proceedings of the
2015 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 153–163, Denver,
Colorado, May 2015. Association for Computational Linguistics.

[55] Angeliki Lazaridou, Anna Potapenko, and Olivier Tieleman. Multi-agent Com-
munication meets Natural Language: Synergies between Functional and Struc-
tural Language Learning. In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 7663–7674, Online, July 2020.
Association for Computational Linguistics.

[56] Julie Anne Legate and Charles D Yang. Empirical re-assessment of stimulus
poverty arguments. The Linguistic Review, 18(1-2):151–162, 2002. Publisher:
Walter de Gruyter.

[57] Fred Lerdahl, Ray S Jackendoff, and Ray Jackendoff. A Generative Theory of
Tonal Music. MIT Press, 1983.

[58] Roger Levy. Expectation-based syntactic comprehension. Cognition,
106(3):1126–1177, March 2008.



Draf
t

28 � Bibliography

[59] Jeffrey Lidz, Sandra Waxman, and Jennifer Freedman. What infants know
about syntax but couldn’t have learned: experimental evidence for syntactic
structure at 18 months. Cognition, 89(3):295–303, October 2003.

[60] Jeffrey Lidz, Sandra Waxman, and Jennifer Freedman. What infants know
about syntax but couldn’t have learned: experimental evidence for syntactic
structure at 18 months. Cognition, 89(3):295–303, 2003. Publisher: Elsevier.

[61] Tal Linzen. What can linguistics and deep learning contribute to each other?
Response to Pater. Language, 95(1):e99–e108, 2019. Publisher: Linguistic So-
ciety of America.

[62] Tal Linzen and Marco Baroni. Syntactic Structure from Deep Learning. Annual
Reviews of Linguistics, 2021.

[63] Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the Ability of
LSTMs to Learn Syntax-Sensitive Dependencies. Transactions of the Associa-
tion for Computational Linguistics, 4:521–535, 2016.

[64] Pierre Lison and Jorg Tiedemann. OpenSubtitles2016: Extracting Large Par-
allel Corpora from Movie and TV Subtitles. In Proceedings of the 10th In-
ternational Conference on Language Resources and Evaluation (LREC 2016),
page 7, 2016.

[65] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[66] Charles Lovering, Rohan Jha, Tal Linzen, and Ellie Pavlick. Predicting In-
ductive Biases of Fine-tuned Models. In International Conference on Learning
Representations, 2021.

[67] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. ViLBERT: Pretraining
Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks.
In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[68] Brian MacWhinney. The CHILDES project: Tools for analyzing talk, Volume
II: The database. Psychology Press, 2014.

[69] Christopher D. Manning. Computational Linguistics and Deep Learning. Com-
putational Linguistics, 41(4):701–707, December 2015.

[70] Christopher D. Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal,
and Omer Levy. Emergent linguistic structure in artificial neural networks
trained by self-supervision. Proceedings of the National Academy of Sciences,
117(48):30046–30054, December 2020.



Draf
t

Bibliography � 29

[71] R Thomas McCoy, Robert Frank, and Tal Linzen. Revisiting the poverty of
the stimulus: hierarchical generalization without a hierarchical bias in recurrent
neural networks. In Proceedings of the 40th Annual Conference of the Cognitive
Science Society., 2018.

[72] R. Thomas McCoy, Robert Frank, and Tal Linzen. Does Syntax Need to Grow
on Trees? Sources of Hierarchical Inductive Bias in Sequence-to-Sequence Net-
works. Transactions of the Association for Computational Linguistics, 8:125–
140, December 2020.

[73] Tom M Mitchell. The need for biases in learning generalizations. Department
of Computer Science, Laboratory for Computer Science Research . . . , 1980.

[74] Richard Montague. The proper treatment of quantification in ordinary English.
In Approaches to natural language, pages 221–242. Springer, 1973.

[75] Tu Anh Nguyen, Maureen de Seyssel, Patricia Rozťe, Morgane RiviŒere, Evgeny
Kharitonov, Alexei Baevski, Ewan Dunbar, and Emmanuel Dupoux. The Zero
Resource Speech Benchmark 2021: Metrics and baselines for unsupervised spo-
ken language modeling. arXiv:2011.11588 [cs, eess], December 2020. arXiv:
2011.11588.

[76] Christian W. Omlin and Sean Snyders. Inductive bias strength in knowledge-
based neural networks: application to magnetic resonance spectroscopy of
breast tissues. Artificial Intelligence in Medicine, 28(2):121–140, June 2003.

[77] Ludovica Pannitto and Aurťelie Herbelot. Recurrent babbling: evaluating the
acquisition of grammar from limited input data. In Proceedings of the 24th Con-
ference on Computational Natural Language Learning, pages 165–176, Online,
November 2020. Association for Computational Linguistics.

[78] Joe Pater. Generative linguistics and neural networks at 60: Foundation, fric-
tion, and fusion. Language, 95(1):e41–e74, 2019. Publisher: Linguistic Society
of America.

[79] Amy Perfors, Joshua B Tenenbaum, and Terry Regier. The learnability of
abstract syntactic principles. Cognition, 118(3):306–338, 2011. Publisher: El-
sevier.

[80] Fabio Petroni, Tim Rockt ĺaschel, Sebastian Riedel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, and Alexander Miller. Language Models as Knowledge
Bases? In Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 2463–2473, Hong Kong, China,
November 2019. Association for Computational Linguistics.

[81] Jackson Petty and Robert Frank. Transformers Generalize Linearly.
arXiv:2109.12036 [cs], September 2021. arXiv: 2109.12036.



Draf
t

30 � Bibliography

[82] Geoffrey K. Pullum and Barbara C. Scholz. Empirical assessment of stimu-
lus poverty arguments. The Linguistic Review, 18(1-2):9–50, 2002. Publisher:
Walter de Gruyter.

[83] Laura Pťerez-Mayos, Miguel Ballesteros, and Leo Wanner. How much pretrain-
ing data do language models need to learn syntax? September 2021.

[84] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
and others. Learning transferable visual models from natural language super-
vision. arXiv preprint arXiv:2103.00020, 2021.

[85] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Im-
proving language understanding with unsupervised learning. Technical report,
Technical report, OpenAI, 2018.

[86] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research, 21(140):1–67, 2020.

[87] Ezer Rasin and Athulya Aravind. The nature of the semantic stimulus: the
acquisition of every as a case study. Natural Language Semantics, 29(2):339–
375, June 2021.

[88] Shauli Ravfogel, Yoav Goldberg, and Tal Linzen. Studying the Inductive Biases
of RNNs with Synthetic Variations of Natural Languages. In Proceedings of
NAACL-HLT, pages 3532–3542, 2019.

[89] Florencia Reali and Morten H Christiansen. Uncovering the richness of the
stimulus: Structure dependence and indirect statistical evidence. Cognitive
Science, 29(6):1007–1028, 2005. Publisher: Wiley Online Library.

[90] Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin Kirchhoff. Masked
Language Model Scoring. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 2699–2712, Online, July 2020.
Association for Computational Linguistics.

[91] John R. Searle. Speech acts: An essay in the philosophy of language, volume
626. Cambridge university press, 1969.

[92] Melanie Soderstrom, Amanda Seidl, Deborah G Kemler Nelson, and Peter W
Jusczyk. The prosodic bootstrapping of phrases: Evidence from prelinguistic
infants. Journal of Memory and Language, 49(2):249–267, 2003. Publisher:
Elsevier.

[93] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid.
Videobert: A joint model for video and language representation learning. In
Proceedings of the IEEE/CVF international conference on computer vision,
pages 7464–7473, 2019.



Draf
t

Bibliography � 31

[94] Hao Tan and Mohit Bansal. LXMERT: Learning Cross-Modality Encoder Rep-
resentations from Transformers. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5100–
5111, Hong Kong, China, November 2019. Association for Computational Lin-
guistics.

[95] Annmarie Van Dooren, Anouk Dieuleveut, Ail\’{i}s Cournane, and Valentine
Hacquard. Figuring out root and epistemic uses for modals: The role of the
input. Journal of Semantics.

[96] Marten van Schijndel, Aaron Mueller, and Tal Linzen. Quantity doesn’t buy
quality syntax with neural language models. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 5831–5837, Hong Kong, China, November 2019. Association for Compu-
tational Linguistics.

[97] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, \Lukasz Kaiser, and Illia Polosukhin. Attention is All you
Need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 5998–6008. Curran Associates, Inc., 2017.

[98] Alex Warstadt and Samuel R. Bowman. Linguistic Analysis of Pre-
trained Sentence Encoders with Acceptability Judgments. arXiv preprint
arXiv:1901.03438, 2019.

[99] Alex Warstadt and Samuel R Bowman. Can neural networks acquire a struc-
tural bias from raw linguistic data? In Proceedings of the 42nd Annual Confer-
ence of the Cognitive Science Society., 2020.

[100] Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng,
Sheng-Fu Wang, and Samuel R. Bowman. BLiMP: The Benchmark of Linguistic
Minimal Pairs for English. Transactions of the Association for Computational
Linguistics, 8:377–392, 2020. eprint: https://doi.org/10.1162/tacl a 00321.

[101] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Corpus of Linguistic
Acceptability, 2018.

[102] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network
acceptability judgments. Transactions of the Association for Computational
Linguistics, 7:625–641, 2019. Publisher: MIT Press.

[103] Alex Warstadt, Yian Zhang, Haau-Sing Li, Haokun Liu, and Samuel R Bow-
man. Learning Which Features Matter: RoBERTa Acquires a Preference for
Linguistic Generalizations (Eventually). In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing, Punta Cana, Dominican
Republic, November 2020. Association for Computational Linguistics.



Draf
t

32 � Bibliography

[104] Ethan Wilcox, Roger Levy, Takashi Morita, and Richard Futrell. What do RNN
Language Models Learn about Filler–Gap Dependencies? In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 211–221, 2018.

[105] Ethan Wilcox, Pranali Vani, and Roger Levy. A Targeted Assessment of In-
cremental Processing in Neural Language Models and Humans. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 939–952, Online, August 2021. Association for
Computational Linguistics.

[106] Colin Wilson. Learning phonology with substantive bias: An experimental and
computational study of velar palatalization. Cognitive science, 30(5):945–982,
2006. Publisher: Wiley Online Library.

[107] Charles D Yang. Knowledge and learning in natural language. PhD Thesis,
Massachusetts Institute of Technology, 2000.

[108] Tian Yun, Chen Sun, and Ellie Pavlick. Does Vision-and-Language Pretraining
Improve Lexical Grounding? In Proceedings of EMNLP, September 2021. arXiv:
2109.10246.

[109] Yian Zhang, Alex Warstadt, Xiaocheng Li, and Samuel R. Bowman. When
Do You Need Billions of Words of Pretraining Data? In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1112–1125, Online, August 2021. Association for Com-
putational Linguistics.


